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Abstract
A two-dimensional Ising system composed of ferrimagnetically ordered chains
coupled weakly and ferromagnetically to each other is discussed by the use
of differential operator technique, in order to clarify the possibility of two
compensation points in a molecular-based ferrimagnetic magnetic material. For
this possibility, we find that each chain must consist of at least three magnetic
atoms with spin 1

2 and integer spins as well as particular negative uniaxial
anisotropy values. Two possible cases are proposed.

1. Introduction

A major advance in magnetism has been the discovery of molecular-based magnetic materials.
Many bimetallic molecular-based magnetic materials in which two kinds of magnetic atom,
A and B, alternate regularly have exhibited ferrimagnetic properties and seem to be rather
well interpreted by the use of the mixed-spin (Heisenberg or Ising) model [1, 2]. Most of
these ferrimagnetic materials have not exhibited a compensation point at which the sublattice
magnetizations cancel out completely. However, some molecular-based compounds [3] whose
structures are two-dimensional honeycomb networks have shown the complete cancellation
of sublattice magnetizations at a finite temperature and the appearance of a compensation
point in the compounds seems to be extremely characteristic, as discussed theoretically
in [4, 5]. Furthermore, by mixing two Prussian blue analogues artificially Ohkoshi et al [6]
have synthesized a new type of molecular-based ferrimagnetic material, whose spontaneous
magnetization has for the first time shown the existence of two compensation points
experimentally, although theoretically the possibility of two compensation points has been
discussed in a variety of ferrimagnetic systems (see [7]).

Among these compounds, a particular interest has been paid to molecular-based
ferrimagnetic chains coupled weakly to each other. Many theoretical studies have been directed
to these low-dimensional systems and various magnetic properties of these systems have been
examined (see [2]). However, it has not been discussed whether a compensation point may
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exist in such a low-dimensional ferrimgnetic system. As has been discussed in [8], on the other
hand, the two-dimensional ferromagnetic Ising system composed of ferrimagnetically ordered
chains with alternating spin- 1

2 A and spin-S (S > 1
2 ) B atoms may exhibit a compensation point

when the anisotropy constant d (or d = DB/J ) of the spin-S atom is larger than d = −1.0
and the exchange interaction between spin- 1

2 atomic pairs is strong in comparison with the
exchange interaction between spin- 1

2 and spin-S atomic pairs. As far as we know, however, it
has not been clarified theoretically or experimentally whether two compensation points may
exist in a low-dimensional molecular-based ferrimagnetic material.

The aim of this report is to propose a two-dimensional ferromagnetic system composed of
ferrimagnetically ordered Ising chains coupled weakly, whose total magnetization may exhibit
two compensation points at finite temperatures. In section 2, we propose a model system
which may exhibit two compensation points and the formulation of the system is given within
the framework of the Zernike approximation [9, 10]. In section 3, the numerical results are
given for the two model systems.

2. Formulation

In [8], a two-dimensional ferromagnetic Ising system composed of ferrimagnetically ordered
chains with alternating spin- 1

2 and spin-S (S > 1
2 ) atoms has been investigated by the use of the

differential operator technique [9, 10]. However, the possibility of two compensation points
could not be found in the system. For this possibility, therefore, it seems to be necessary for
the chainlike system to include at least three magnetic atoms, spin- 1

2 A atoms, spin-S B atoms
and spin-S ′ (S ′ > 1

2 ) C atoms. The spin structure of such a system is depicted in figure 1. The
Hamiltonian of the system is given by

H = J
∑
(im)

µzi S
z
m + J1

∑
(in)

µzi S
z
n − J2

∑
(iδ)

µzi µ
z
i+δ

−J3

∑
(ij)

µzi µ
z
j −DB

∑
m

(Szm)
2 −DC

∑
n

(Szn)
2, (1)

where the first four summations run over the nearest-neighbour pairs. µzi is the spin- 1
2 operator

for the A atoms. Szm and Szn are respectively the spin-S (S > 1
2 ) operator for the B atoms and

the spin-S ′ (S ′ > 1
2 ) operator for the C atoms. DB andDC are the uniaxial anisotropy constants

on B and C atoms. We assume that the inter-chain interaction J3 is very weak in comparison
with the intra-chain interactions J , J1 and J2.

The total magnetization of the system is given by

(M/nN) = σA + (mB + mC)/2 (2)

with

σA = 〈µzi 〉, mB = 〈Szm〉, mC = 〈Szn〉, (3)

where N is the total number of A atoms in a chain and n is the number of chains. By the use
of the differential operator technique [9, 10], as has been discussed in [4, 7, 8], the sublattice
magnetizations mB and mC are exactly given by

mB = −2σAFB(J ) and mC = −2σAFC(J1), (4)

where the function Fn(x) (n = B or C) depends on the value of S (or S ′). When S = 1 or 2,
it is defined by

Fn(x) = 2 sinh(βx)

2 cosh(βx) + exp(−βDn)
for S = 1
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Figure 1. The spatial configuration of the ferrimagnetically ordered chainlike system composed
of three magnetic atoms, like a molecular-based magnetic material. The white circles denote A
atoms with spin 1

2 , the shaded circles represent spin-S (S > 1
2 ) B atoms and the black circles are

spin-S′ (S′ > 1
2 ) C atoms.

or (5)

Fn(x) = 4 sinh(2βx) + 2 exp(−3βDn) sinh(βx)

2 cosh(2βx) + 2 exp(−3βDn) cosh(βx) + exp(−4βDn)
for S = 2,

where β = 1/kBT . Substituting (4) into (2), the total magnetization can be rewritten as

(M/nN) = σA[1 − {FB(J ) + FC(J1)}]. (6)

There may be a compensation temperature T κ at which the total magnetization reduces to zero
even though σA �= 0. The compensation point in the system seems to be exactly given by

1 = FB(J ) + FC(J1). (7)

The problem is now how to evaluate the sublattice magnetization σA. For this aim, let us
use the decoration–iteration transformation [11], in order to obtain the effective Hamiltonian
for the anisotropic two-dimensional system described by

Heff = −
∑
(iδ)

J Rδ µ
z
i µ

z
i+δ, (8)

where JRδ can take three values depending on the direction. They are given by

JRδ = J2 + JBeff ≡ JRB for the interaction through a B atom,

J Rδ = J2 + JCeff ≡ JRC for the interaction through a C atom

and (9)

JRδ = J3 for the interaction perpendicular to a chain.

The two effective interactions JBeff and JCeff can be obtained easily by the use of the relation∑
Szp

exp[βJip(µ
z
i + µzi+δ)S

z
p + βDP (S

z
p)

2] = A exp[βJPeffµ
z
iµ

z
i+δ], (10)
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where Jip = J or J1 and Dp = DB or DC , depending on whether p is selected as p = m or
p = n. The JPeff depends on the values of S and DP (see [7, 8]).

Using the effective Hamiltonian and the differential operator technique [9, 10], the
sublattice magnetization σA is given, within the framework of the Zernike approximation [12],
in the form

σA =
[

1 − 2L1

8L2

]1/2

(11)

with

L1 = (1/4)[2f ((JRB + JRC )/2 + J3) + 2f ((JRB + JRC )/2)
+f ((JRB − JRC )/2 + J3)− f ((JRB − JRC )/2 − J3)]

L2 = (1/4)[2f ((JRB + JRC )/2 + J3)− 2f ((JRB + JRC )/2)
+f ((JRB − JRC )/2 − J3)− f ((JRB − JRC )/2 + J3)],

(12)

where the function f (x) is defined by

f (x) = (1/2) tanh(βx/2). (13)

The transition temperature TC is then determined from the relation

1 = 2L1. (14)

3. Numerical results

For the following numerical calculations, let us first introduce the parameters defined by

a = J1/J, b = J2/J, c = J3/J, d = DB/J and α = DC/DB.

(15)

We here assume that c = 0.1, while the value of c can of course take any value. Furthermore,
after performing a number of numerical calculations for the relation (7) we have found that
the values of S and S ′ must be integer numbers, such as the system with S = 1 and S ′ = 2,
in order to find the possibility of two compensation points. In the following, we present the
numerical results of the magnetic properties (phase diagram and magnetization curve) in two
typical systems.

3.1. The ferrimagnetic system with S = 1 and S ′ = 2

In figure 2, the results of the compensation temperature Tκ obtained by solving (7) numerically
for the system with a = 0.75, S = 1 and S ′ = 2 are plotted in the T –d space as solid curves,
when the value of α is changed from α = 0.1 to α = 1.0. The curves labelled α = 0.2 and
0.4 exhibit the reentrant behaviour (double values) in the special negative regions of d. In
the figure, the results of the transition temperature TC obtained by solving (14) numerically
are plotted in the T –d space as dashed curves for the same system with the two values of b
(b = 5.0 and 10.0), when the value of α is changed from α = 0.1 to α = 1.0. In order to
get the physical meaning of a compensation point in the ferromagnetic system, each Tκ (solid)
curve in figure 2 must take a value lower than the corresponding TC (dashed) curve in the
figure. Here, one should notice that the Tκ curve is the exact result but the TC curve is the
result of the Zernike approximation.

The results of α = 0.2 and 0.4 in figure 2 clearly express that each system may exhibit
the two compensation points when the value of d is selected in the reentrant (double-value)
region of d . In order to confirm the prediction, the temperature dependences of |M|, σA, |mB |
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Figure 2. The phase diagram (TC and Tκ) in the T –d plane of the system with S = 1 and S′ = 2,
when two values of b (b = 5.0 and 10.0) are selected and the value of α is changed from α = 0.1 to
α = 1.0. TC (dashed curve) and Tκ (solid curve) represent respectively the transition temperature
obtained within the Zernike approximation and the compensation temperature obtained exactly.
For the numerical calculations, the parameters a and c are fixed at a = 0.75 and c = 0.1. The
dashed curves represent the five corresponding TC curves obtained by solving (14) numerically.
Within the negative region of d, the lowest value of TC is obtained for the case of α = 1.0, as noted
in the figure. On the other hand, for the positive region of d, the lowest value of TC is obtained for
the case of α = 0.1.

and |mC | are plotted in figure 3 for the two systems with a = 0.75, b = 10.0 and c = 0.1;
α = 0.4, d = −1.3 for curve γ and α = 0.2, d = −2.0 for curve ζ . Each thermal variation of
|M| clearly represents the two compensation points below TC and reduces to zero at T = 0 K.
Such a thermal variation of |M| originates from those of sublattice magnetizations, as shown
in figure 3(b). The sublattice magnetization mB takes the value of mB = 0.0 (or the spin state
Szm = 0.0) atT = 0 K, since in each case the value ofd is lower than the critical valued = −1.0.
With the increase of T , the sublattice magnetization mB at first increases and then decreases
to zero at T = TC . The sublattice magnetizationmC takes the value of |mC | = 1.0 (or the spin
stateSzn = ±1.0) atT = 0 K, since the value of d is in the region of −1.0 < (DC/J ) < −(1/3).
It at first shows a rapid decrease from the value at T = 0 K and then exhibits the normal thermal
variation, while the sublattice magnetization σA represents the standard thermal variation. In
particular, the possibility of two compensation points in |M| originates from the characteristic
behaviours ofmB andmC . This fact indicates that the ferrimagnetic chainlike system composed
from spin- 1

2 A atoms, spin-2 B atoms and spin-2 C atoms may also exhibit the possibility of
two compensation points, when the sublattice magnetizations mB and mC take forms similar
to those of figure 3(b) by selecting the appropriate values for the five parameters a, b, c, d
and α.

3.2. The ferrimagnetic system with S = 2 and S ′ = 2

Figure 4 shows the phase diagram (TC and Tκ versus d plot) of the ferrimagnetic chainlike
system with S = 2 and S ′ = 2, when the parameters a and c are fixed at a = 0.2 and c = 0.1,
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Figure 3. The temperature dependences of the spontaneous magnetization (|M|/nN in (a)) and
the sublattice magnetizations (σA, |mB |, |mC | in (b)) in the system with S = 1 and S′ = 2, when
the two sets of d and α are selected and the other parameters are fixed at a = 0.75, b = 10.0 and
c = 0.1. The sublattice magnetization curves (or σA) for γ and ζ take almost the same form and
hence they cannot be distinguished within the present scale. The curves labelled γ and ζ in (b)
represent the sublattice magnetization curves corresponding to the |M| curves in (a).

two values of b (b = 5.0 and 10.0) are selected and the value of α is changed from α = 1.0 to
α = 4.0. In order that the solid line obtained from (7) takes the real meaning of the Tκvalue,
each solid line must be lower than the corresponding dashed (or TC) lines. In the figure, each
dashed line actually represents the four TC lines for the four values of α (α = 1.0, 2.0, 3.0
and 4.0) obtained from (14) and within the scale in figure 4 they appear like one dashed line.
The solid curve labelled 2.0 exhibits the reentrant (double values) behaviour in the vicinity of
d = −0.5. This indicates that the two compensation points may be obtained in the |M| curve,
when one selects an appropriate value of d in the region.
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Figure 4. The phase diagram (TC and Tκ) in the T –d plane of the system with S = 2 and S′ = 2,
when the two parameters are fixed at a = 0.2 and c = 0.1, the two values of b are selected as
b = 5.0 and 10.0 and the value of α is changed from α = 1.0 to α = 4.0. Each dashed line
represents the four TC curves obtained by changing the four values of α, but within the present
scale they are plotted as one dashed line. The solid curve below the corresponding TC line denotes
the real compensation temperature Tκ .

In figure 5, the temperature dependences of the total magnetization (|M|/nN ) and the
sublattice magnetizations (σA, |mB | and |mC |) are plotted for the system with a = 0.2, b = 5.0
and c = 0.1, selecting the values of d = −0.525 and α = 2.0. Their thermal variations are
very similar to those in figure 3. |M|/nN clearly shows two compensation points below TC ,
as predicted in figure 4.

4. Conclusions

In this work, we have studied the possibility of two compensation points in a two-dimensional
ferromagnetic system composed of ferrimagnetically ordered chains by the use of the
differential operator technique. The chain consists of spin- 1

2 A atoms, spin-S (S > 1
2 )

B atoms and spin-S ′ (S ′ > 1/2) C atoms. We have examined the phase diagram and the
magnetization curve in the system with a weak interchain interaction (or c = 0.1), in order
to simulate the experimental data of molecular-based magnetic materials. As discussed in
section 3, we have found the possibility of two compensation points in two chainlike systems;
one is composed of S = 1 and S ′ = 2 and another is composed of S = 2 and S ′ = 2. The
possibility is rather restricted in the two systems, since one has to select special values of
uniaxial anisotropy constants, in order that the sublattice magnetizations mB and mC take
the characteristic forms for the thermal variations. However, one should notice that the
characteristic thermal variation of |M| given in figures 3 and 5 has not been predicted in
the Néel theory of ferrimagnetism [13].
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Figure 5. The temperature dependences of the spontaneous magnetization (|M|/nN ) and the
sublattice magnetizations (σA, |mB | and |mC |) in the system with S = 2 and S′ = 2, when the five
parameters are fixed at a = 0.2, b = 5.0, c = 0.1, d = −0.525 and α = 2.0.

In this work, we have used the Zernike approximation [12] for the evaluation of
magnetization in a molecular-based ferromagnetic material composed of three magnetic atoms.
The approximation is superior to that of the standard mean-field approximation, but the
statistical accuracy is less than that of the Bethe–Peierls approximation [9, 10]. Accordingly,
when one uses an improved approximation for the evaluation of TC (or magnetization), the
dashed lines in figures 2 and 4 will take values lower than those of figures 2 and 4, while the
position of compensation point (points) could not be changed. The main reason that we have
used the Zernike approximation in this work is dependent on the intra-chain anisotropy (or the
A atom is surrounded by two different (B and C) atoms, such as section 3.1). If the A atom
is surrounded only by the same atoms (such as two B atoms with a spin S (S > 1

2 ) in section
3.2), one can solve analytically the magnetic properties of the quasi-chainlike system within
the Bethe–Peierls approximation. This work will be discussed in future. However, one could
not find the possibility of two compensation points in such a system with a spin S less than
S = 2. In fact, we have examined in detail the possibility of two compensation points in the
ferrimagnetically ordered chainlike system composed of spin- 1

2 A atoms, spin-1 B atoms and
spin-1 C atoms within the same framework as the present one. However, we could not find the
possibility, even when various sets of parameters are selected.

Finally, as discussed in this work, the study of finding two compensation points in a
ferrimagnetically ordered chainlike system may be interesting experimentally and theoretically.
Furthermore, the magnetization in such a system is changed in sign (or aligned parallel to
the easy axis) above the Tκ and antiparallel below. This situation gives rise to the memory
effect that is widely used for magnetic data storage. Especially, the study of a molecular-
based ferrimagnetic system with two compensation points may open the new possibility, as
proposed in a ferrimagnetic multiplayer system with two compensation points [14]. The recent
experimental results in some molecular-based ferromagnetic materials have revealed a very
appealing field-thermal-dependent magnetization with two compensation points [15].
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